

An Energy Efficiency Workshop & Exposition

Palm Springs, California

Please be courteous to our speakers

Turn off all cell phones

and

Set pagers to vibrate

An Energy Efficiency Workshop & Exposition

Palm Springs, California

Partnership

Courthouse Tenants

Showcase use of Alternative Financing to improve energy efficiency of Federal new construction project

Mission

- Introduce General Concepts re: Energy Savings Performance Contracting application in new construction scenario
- Relate specific concepts applied to Gulfport Courthouse project

- Capital Budget Challenges
 - Limited Funding
 - Lengthy Approval Process
 - Functional Scope Creep
 - > Energy Item Vulnerability
- Enhance Energy Performance of newly constructed buildings

- Deliver Quality project on time, within budget
- Satisfy Customer expectations
- Coordinate myraid contracts and criteria that impact project completion and performance

- Facilitate interaction between GSA & ESCO
- Balance needs of parties (especially in terms of risk)
- Gain concensus on approach (esp. DOE
 & Agency Contracting Officer buy-in)

- **□** Financing Agent for ECM Savings
 - **☐** Install subset of ECMs
 - □ Construct discrete, energy-related Scope of Work
 - Subcontractor (Mech, Elec, and/or Cntls) for entire building
 - □ General Contractor for entire building

Implementation

- □ Warranty only
 - □ Operate and/or maintain ECMs installed by ESCO
 - □ Operate and/or maintain all ESPC ECMs
 - □ Full building operation and maintenance

Operations and Maintenance

- Model baseline condition
- Value engineer design from energy standpoint
- Model energy efficient design

Energy $\$_{base}$ – Energy $\$_{eff.}$ = Level of Alternative Financing Available

- Current design for new building
- □ ASHRAE 90.1 standards
- Energy performance of current location
- Typical, recent experience of GSA
- Combination of above

Whatever is agreeable; needs to withstand audit!

- When is it appropriate to get ESCO involved?
- How do you handle ESCO involvement prior to ESPC Delivery Order award?
- How do ESCO-recommended design changes make their way into final design of building?

Federal Courthouse, Gulfport, MS

Gulfport Courthouse

- New eight-story tower
- Historic preservation/reuse of 1920's vintage high school
- Stand-alone service building that supports campus (chillers, boilers, emergency generator)
- Approximately 220,000 SF total
- Construction Cost: \$ 45 Million

- General Contractor Selected: Sep 00
- Notice to Proceed to GC: Aug 01
- Scheduled Completion: Aug 03
- Beneficial Occupancy: Oct 03

- Unofficial Notification of Selection: Feb
 00
- □ Initial Proposal Submitted: Nov 00
- Notice of Intent to Award D.O.: Feb 01
- □ Final Proposal Submitted: May 01
- Delivery Order Awarded: Sep 01

Gulfport Courthouse <u>Development Methodology</u>

- 1) Determine Baseline
 - 2) Analyze ECMs/Value Engineer
 - 3) Identify incremental costs/savings
 - 4) Aggregate Savings
 - 5) Apply savings to identifiable feature

- Annual Savings
 - Energy Savings
 - O & M Savings
- One-time Ancillary Cost Savings/Cost Avoidance

Gulfport Courthouse 2002 Energy Savings

Total Energy Savings	\$83.7K
 Single Electrical Service Meter 	\$ 5.9K
□ Cooling Tower Water Meter	\$ 5.9K
 Occupancy Controlled Ventilation 	\$10.0K
□ Increased Chiller Eff., Plant D T	\$ 13.9K
□ VFDs on ChW & HW Pumps, CT Fans	\$ 4.9K
VFDs on Air Handling Units	\$ 8.3K
 Lower ChW Coil Static Pressure 	\$ 8.1K
 Lighting Upgrades 	\$16.5K
 Glazing Upgrades 	\$10.2K

Orange → Primary ECMs ~ Blue → Secondary ECMs

Gulfport Courthouse Operations & Maintenance

- Full building O & M(i.e., not just O & M on ECMs)
- Normal GSA approach: Base + 4 option years
- As originally proposed: 15 years
- As awarded: 17 years
 - ~ \$40K annual savings (Year 1) \$88K cost incurred prior to start of performance period

- Deleted Secondary ChW & HW Pumps
- Reduced Capacity, Changed to Inclined-tube Boilers
- Reduced Size of Distribution Piping to Buildings
- Electrical & Controls Revised
- Reduced Service Building Footprint

Total: \$320K

Capital Investment: \$1.6 Million

Annual Energy Savings: \$84 Thousand

Annual O & M Savings: \$40 Thousand

Cost Avoidance (annualized): \$ 37 Thousand

Amount Financed: \$1.9 Million(17 years @ 8.4%)

Note: Annual savings figures represent Year 1 values

Gulfport Courthouse <u>Development Coordination</u>

- Iterative review of potential ECM baseline and savings prior to submission of Initial Proposal
- Bi-weekly conference calls (GSA, DOE/FEMP, Sempra) during preparation of final Proposal
- Preliminary negotiations/general price agreement w/courthouse mechanical & electrical subs after design completion
- □ Final negotiations on ESPC conducted after those with GC on courthouse construction

- Baseline determination
- Define reasonable post-installation configuration
- Identify appropriate Monitoring and Verification (M&V) processes
- Conduct M&V activities after construction
- Provide annual reports and verification results

Gulfport Courthouse <u>Measurement & Verification</u>

ECMs Description	IPMVP Option	Baseline M&V	Post-Retrofit M&V
Glazing Upgrade	NB-A-01	Single-Pane (laminated), Clear, Uncoated	Agreed-to Baseline & Savings Based on Engineering Calculation & Simulation Results
Lighting Modifications and Fixture Upgrade	NB-C-01	1.4 W/sf for Courthouse	Agreed to Baseline & Savings Based on Engineering Calculation. Reduced after Case Lighting Density of 1.09 W/sf. Verify equipment is properly maintained.
High Efficiency Chiller Plant	NB-C-01	Chillers with 0.68 kW/ton	Continuous Measured Electrical Consumption.
VFDs on AHUs, Secondary Chilled Water and Hot Water Pumps, and Cooling Tower Fans	NB-C-01	Constant Speed Motors with Estimated Baseline kW	

Gulfport Courthouse <u>Measurement & Verification</u>

ECMs Description	IPMVP Option	Baseline M&V	Post-Retrofit M&V
AHU and Cooling Coil Upgrade	NB-A-01	4.75" Static Pressure at Cooling Coils	Agreed-to Savings Based on Engineering Calculation and Simulation Results
Modified Central Plant Chilled Water (up to 14) and Condenser Water (up to 12) Delta T	NB-A-01	Chilled Water Delta T= 10, Condenser Water Delta T = 10	
Occupancy Controlled Ventilation	NB-A-01	No Occupancy Control Ventilation	
Reduce Cooling Tower Water Consumption	NB-A-01	Constant Volume Bleed off, No Side Filtration, No Waste Water Credit	

- Construction Kick-off Meeting: March 02
- Begin Physical Construction: Apr 02
- Construction of ECMs Complete: Aug 02
- Ability to Deliver Chilled/Hot Water: Sep 02
- Begin Performance Period: Oct 03
- Notes: 1) Construction originally slated to begin Mar 02
 - 2) Equipment procurement took place Oct 01-Apr 02

Gulfport Courthouse <u>Financing Challenge</u>

- Lock financing at Delivery Order Award (8.4%)
- □ Reinvest financed amount (2%)
- Commence construction draw 6 months after DO award
- Complete construction draw 12 months after DO award
- Begin receipt of payments from GSA 25 months after DO award

Impact on financing: nearly \$300K

Gulfport Courthouse Contracting Relationship

- Safety Program
- QA/QC Procedures
- Scheduling
- Site Coordination
- Commissioning

- GC and ESCO selection criteria Respective strategies for working together?
- Design When should ESCO get involved? To what extent? Treatment prior to D.O. award?
- Partnering efforts Integrate ESCO into process during project development?

Cost – Benefit Trade-offs

Early April 2002

Late April 2002

Gulfport Courthouse <u>Benefits</u>

- Reduced first-cost to GSA
- Reduced recurring costs to GSA
- More energy efficient campus
- Fixed accountability for systems performance

Gulfport Courthouse Points of Contact

- □ GSA: Richard Stephenson (Sr. PM)
 - PH: 865-574-3559 e-mail: richard.stephenson@gsa.gov
- □ GSA: Laura Shadix (PM)
 - PH: 404-331-7965 e-mail: laura.shadix@gsa.gov
- DOE/FEMP: Terry Sharp
 - PH: 865-574-3559 e-mail: sharptr@ornl.gov
- Sempra Energy Solutions: Phil Smith
 - PH: 770-632-0672 e-mail: psmith@semprasolutions.com